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Abstract. A subsemigroup S of a group G is called generating if elements of S gene-
rate G as a group. If S satisfies an identity, then G = SS−1 = S−1S is a group
of fractions of S. We recall the results concerning the problem which was open for
more then 20 years, whether each identity satisfied in S must be satisfied in its
group of fractions. The groups where the answer for this question is positive for every
generating semigroup we call S-R-groups. We show that varieties of S-R-groups form
a sublattice in the lattice of all group varieties.
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1. Preliminaries

Let F be the free group on the set X = {x1, x2, x3, . . .}, and let F ⊆ F be the
cancellative free semigroup with the unity, generated by X .

• A group G satisfies an identity u(x1, . . . , xm)≡v(x1, . . . , xm) if for every elements
g1, . . . , gm in G the equality u(g1, . . . , gm)=v(g1, . . . , gm) holds.

• An identity in a semigroup has a form u(x1, . . . , xn) = v(x1, . . . , xn) where the
words u and v are written without inverses of variables, u, v ∈ F . Such an identity
in a group is called a semigroup identity. It is clear that abelian groups and groups
of finite exponent satisfy semigroup identities.

• A semigroup S satisfies left (right) Ore condition if for arbitrary a, b ∈ S there are
a′, b′ ∈ S such that a′a = b′b (resp. aa′ = bb′).

• A subsemigroup S of a group G is called a generating semigroup if elements of S
generate G as a group.
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• If a generating semigroup S ⊆ G satisfies a nontrivial identity, then S satisfies Ore
conditions (see e.g. [12, Proposition 1]).

• If a generating semigroup S ⊆ G satisfies a nontrivial identity, then G is the group
of fractions of S, that is G = SS−1 = S−1S [5].

• Each congruence ρ ⊆ F × F defines a subset Aρ⊆ FF
−1, where

Aρ :={ ab
−1 | (a, b)∈ρ }, AF

ρ denotes the normal closure of Aρ in F.
• Let G be a group with a generating semigroup S. If S satisfies a nontrivial identity

then there exists a congruence ρ on F such that S ∼= F/ρ, G ∼= F/AF
ρ and

AF
ρ ∩ FF

−1= Aρ [6, Construction 12.3 and Corollary 12.8].

X
ւ ↓ ց

S ∼= F/ρ←− F −→ F
ց ւ
G ∼= F/AF

ρ

So we have the following commutative diagram

F →֒ F
↓ ↓

S ∼= F/ρ →֒ F/AF
ρ
∼= G

2. History of the topic

Since the 2-generator free semigroup sgp(x, y) contains a free semigroup of infinite
rank sgp(x1, x2, . . .), where each xi is a word on x, y, an identity u(x1, . . . , xn) =
v(x1, . . . , xn) implies a binary identity. So if a generating semigroup S ⊆ G satisfies
a nontrivial identity then S satisfies a 2-variable semigroup identity which, by the
cancellation property, may be assumed as xa(x, y) = yb(x, y) or u(x, y)x = v(x, y)y.
It follows that S satisfies left and right Ore conditions. Then elements in S satisfy
the identities

y−1x=b(x, y)a−1(x, y) and xy−1=u−1(x, y)v(x, y),

which implies that
G = SS−1 = S−1S,

that is G is the group of fractions for S [13, 15, 9] and [6, Theorem 1.23].
It is clear that if S is abelian then the group G is necessary abelian. However, if S

is a free semigroup, then G is not necessary free, because by result of A.I. Mal’tsev
[13], F/F ′′ has a free generating semigroup.

The problem how far properties of a generating semigroup S define the properties
of the group G attracted attention of many authors.

A.I. Mal’tsev considered semigroup identities of the form un = vn, where un, vn
are words on letters x, y, z1, . . . , zn, defined inductively as follows
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u0 = x, v0 = y, u1 = u0z1v0, v1 = v0z1u0, and for n > 0

un+1 = unzn+1vn, vn+1 = vnzn+1un.

In [13] A.I. Mal’tsev proved that a group is nilpotent of class at most n if and only
if it satisfies the identity un = vn. Moreover, if the identity un = vn is satisfied in
a generating semigroup S ⊆ G then it is satisfied in G which must be nilpotent of
class at most n. We shall call the laws with such a property transferable.

2.1. Transferable identities

The following well known problems are due to G. Bergman [1, 2].

GB-Problem. Let G be a group with a generating semigroup S. Must each identity

satisfied in S be satisfied in G?

Another formulation of this problem is whether every proper variety of semigroups
is closed with respect to groups of fractions [17, Question 11.1].

The following question was posed in [10, page 95]. Let a semigroup identity a = b
imply a semigroup identity u = v in groups. Does the same implication hold in
semigroups? The equivalence of this question with the GB-Problem was proved in [11].

Definition 2.1. Let S be a generating semigroup in a group G. We call an identity

u = v transferable if being satisfied in S, it must be satisfied in G.

For example, the nilpotent identities un = vn found by A.I. Mal’tsev [13] are
transferable. In this terminology the GB-Problem asks:

Is every semigroup identity transferable?

Another weaker problem posed by G. Bergman was: Must the group G satisfy some

group identity if its generating semigroup S satisfies a nontrivial semigroup identity?

In 2005 S.V. Ivanov and A.M. Storozhev [7] gave negative answer to both ques-
tions. Their counterexample-group G (in fact a family of them) with a generating
semigroup S contains a free subgroup (hence satisfies no group identity) while S sat-
isfies a semigroup identity similar to that introduced by A.Yu. Ol’shanskii in [16].
Since the problems have negative answers in general, the questions arise:

1. Which semigroup identities are transferable?

2. In which groups all semigroup identities are transferable?

In 1986 when the problems were discussed in G. Bergman’s “Problem Seminar” in
Berkeley, it was shown that the identity x2y2 = y2x2 is transferable. In 1992 it was
shown that the identities xnyn = ynxn are transferable for all natural n [8]. Besides
these identities, Mal’tsev identities and the identity xn ≡ 1 no other examples are
described.

As to the second of the above question, Theorem C in [3] says that Bergman’s
question has an affirmative answer for soluble groups: if G is a soluble group (or,
slightly more generally, an extension of a soluble group by a locally finite group of
finite exponent), and S ⊆ G is any generating subsemigroup satisfying a positive law,
then that law holds in G.
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2.2. Semigroup respecting groups

We define now so called S-R groups, the groups where all semigroup identities are
transferable.

Definition 2.2 ([12]). We call a group G semigroup respecting (S-R group) if all
of the identities holding in any generating semigroup of G, hold in G.

For example, torsion groups are S-R groups, since S−1= S = G.
In 2008 the following properties of S-R groups were proved [12]:

• The property of a group to be S-R group is a “local property” in the sense of
Mal’tsev, that is if every finitely generated subgroup of a group G is the S-R
group, then so is G.

• The class of locally residually finite groups consists of S-R groups.
• Every linear group over a field is the S-R group.
• The class of locally graded groups without free noncyclic subsemigroups consists

of S-R groups. We recall that a group G is called locally graded if every nontrivial
finitely generated subgroup of G has a proper subgroup of finite index. The class
of locally graded groups was introduced in 1970 by Černikov to avoid groups such
as the infinite Burnside groups or Ol’shanskii-Tarski monsters. We note that all
locally or residually soluble groups and all locally or residually finite groups are
locally graded. The class of locally graded groups is closed for taking subgroups,
extensions and cartesian products.

3. End
+ invariance and S-R-property

Let F be the free group on the set X = {x1, x2, x3, . . .}, and let F ⊆ F be the
cancellative free semigroup with the unity, generated by X . By EndF we denote the
set of all endomorphisms in F .

By End
+

we denote the set of so called positive endomorphisms in F , which map
X → F . The set End

+

can be identified with the set EndF of all endomorphisms
of the semigroup F . The inclusion End

+

⊆ EndF is clear. We recall that EndF -
invariant subgroup is called fully invariant or verbal. Every group variety is uniquely
defined by a verbal subgroup V ⊆ F [14].

In view of the construction [6, Theorem 1.23] we have the following:

• A semigroup S ∼= F/ρ is relatively free if and only if the set Aρ and hence the
normal subgroup AF

ρ are End+-invariant.

• The group of fractions of S, G = F/AF
ρ is relatively free if and only if the normal

subgroup AF
ρ is End-invariant.

• Each normal End+-invariant subgroup N in F defines a cancellative congruence ρ
on F by Aρ = N ∩ FF−1. If Aρ 6= 1, then AF

ρ = N .

Hence the following two questions concerning S-R-groups are equivalent:

Must a group of fractions of a relatively free semigroup be the relatively

free group?
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Must each End+-invariant normal subgroup in F be fully invariant?

We show that being invariant with respect to a special automorphism α gives
a criterion for a normal End+-invariant subgroup N ⊳ F to be fully invariant. We
start with two Lemmas.

Lemma 3.1. If a normal subgroup N⊳ F is End+-invariant and N ∩FF−1 6= 1 then

F = FF−1N = F−1FN.

Proof. By assumption there are two different words a′, b′ ∈ F such that a′b′−1 ∈ N
hence a′≡b′ modulo N . Then by cancellation there are a, b ∈ F such that xa(x, y)≡
yb(x, y) modulo N . That is x−1y ∈ a(x, y)b−1(x, y)N . Then since N is normal and
End+-invariant, we get F = FF−1N. The second equality follows by conjugation. ⊓⊔

Lemma 3.2. If F = FF−1N = F−1FN and g1, g2, . . . , gn are in F , then there are

s1, s2, . . . , sn, and r in F such that modulo N gi = sir
−1, i = 1, 2, . . . , n.

Proof. All calculations in the proof are assumed modulo N . If n = 1, the statement
is clear. To proceed by induction, let gi = tiq

−1 for i 6 n− 1 and gn = ab−1 for some
ti, q, a, b ∈ F .

By Ore conditions, which are satisfied in F modulo N , there exist q′, b′ ∈ F such
that modulo N qq′ = bb′. We denote r := qq′ = bb′, si := tiq

′ for i 6 n − 1 and
sn := ab′. Then

gi = tiq
−1 = ti(q

′q′
−1

)q−1 = (tiq
′)(q′

−1
q−1) = sir

−1,

gn = ab−1 = a(b′b′
−1

)b−1 = (ab′)(b′
−1

b−1) = snr
−1

which finishes the proof. ⊓⊔

We recall that F is the free group on the set X = {x1, x2, x3, . . .}. Let α ∈ AutF
fix x1 and map xi → xix

−1
1 , i 6= 1.

Lemma 3.3. If N ⊳ F is End+-invariant and α-invariant then N is fully invariant.

Proof. First we note that α−1 ∈ End+ and hence Nα−1

⊆ N. Hence every End+-
invariant subgroup N in F satisfies the inclusion

N ⊆ Nα. (1)

Since by assumption Nα ⊆ N , we have Nα = N . To show that N is fully invariant it
suffices to check that if w(x1, . . . , xn−1) is a word in N then w(g2, . . . , gn) also is in
N for every g2, g3, . . . , gn in F .

So let w(x1, . . . , xn−1) be in N . Since the map xi → xi+1 is in End+, we have that
w = w(x2, . . . , xn) also is a word in N . Then N contains wα = w(x2x

−1
1 , . . . , xnx

−1
1 )

In view of Lemma 3.2 we can find s2, . . . , sn, r ∈ F such that gi = sir
−1modN. Then

we map x1 → r and xi → si. Since N , being End+ invariant, is invariant to this
mapping, we get w(g2, . . . gn) ∈ N and hence N is fully invariant as required. ⊓⊔

Corollary 3.4. Let N be a normal End+-invariant subgroup in F . Then N is fully

invariant if and only if N = Nα.
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4. Varieties of S-R groups

The varieties of groups form a set partially ordered by inclusion, which is a complete
lattice by means of the following definitions of greatest lower and least upper bound:
M1 ∧M2 is the variety with the set of laws defined by the verbal subgroup M1M2,
while M1 ∨M2 has the set of laws defined by the verbal subgroup M1 ∩M2 [14]. The
one-to-one correspondence between verbal subgroups in F and varieties reverses the
inclusion relations.

In this section we consider group varieties consisting of S-R-groups. These varieties
are defined by specific verbal subgroups in F which, as we show, form a sublattice in
the lattice of all verbal subgroups in F . Because of the duality the same follows for
the S-R-varieties.

Definition 4.1. We say that a variety M is semigroup respecting (S-R-variety) if it
consists of S-R-groups.

By VN we denote the fully invariant closure of a subgroup N⊆F .

Corollary 4.2. A verbal subgroup M ⊆ F defines an S-R-variety if and only if

every End+-invariant normal subgroup N in F is fully invariant modulo M , that is

NM = VNM, which by Corollary 3.4 is equivalent to NM = NαM = (NM)α.

For example, since by result of P. Hall [4] finitely generated nilpotent groups are
residually finite, it follows (see Section 2.2) that nilpotent varieties are semigroup
respecting.

We recall here the following well known result

Lemma 4.3. Let A,B,C ⊆ G and A ⊆ C then AB ∩ C = A(B ∩ C).

Proof. The inclusion “⊇” is clear. The opposite inclusion follows since ab = c ∈ AB∩C
implies b = a−1c ∈ B ∩ C, hence ab = c ∈ A(B ∩ C). ⊓⊔

Now we can prove

Theorem 4.4. Semigroup respecting varieties form a modular lattice.

Proof. Let M1 and M2 be two S-R-varieties defined by verbal subgroupsM1,M2 ∈ F .
By Corollary 4.2 this is equivalent to the fact that for any normal End+-invariant
subgroup N the equalities hold:

NM1 = NαM1, NM2 = NαM2. (2)

Thus we have to prove that for any normal End+-invariant subgroup N ,

NM1M2 = NαM1M2, N(M1 ∩M2) = Nα(M1 ∩M2).

The first equality is clear by assumptions on M1. For any fixed N we denote

D = N(M1 ∩M2), then Dα = Nα(M1 ∩M2).

So, the only we have to prove is the equality D = Dα. Now we note the following
properties of the subgroup D.
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• If a subgroup M is fully invariant then Dα ∩M = (D ∩M)α.
• Since the subgroup D is End+-invariant, D ⊆ Dα and by Lemma 4.3, for A := D

the following equality holds

DM1 ∩Dα = D(M1 ∩Dα). (3)

• Since D is End+-invariant and M1 defines an S-R-variety, so by (2)

DM1 = DαM1. (4)

• Since D ∩M1 is End+-invariant and M2 defines an S-R-variety, also by (2)

(D ∩M1)M2 = (D ∩M1)
αM2 ⊇ (D ∩M1)

α. (5)

• By Lemma 4.3, for A := (D ∩M1) ⊆M1 the following equality holds

(D ∩M1)M2 ∩M1 = (D ∩M1)(M2 ∩M1) = (D ∩M1). (6)

We intersect (5) with M1 then

(D ∩M1)M2 ∩M1 ⊇ (D ∩M1)
α ∩M1 = (D ∩M1)

α,

which, in view of (6), gives D ∩M1 ⊇ (D ∩M1)
α. Since (D ∩M1) is End+-invariant,

D ∩M1 ⊆ (D ∩M1)
α, which implies the equalities

D ∩M1 = (D ∩M1)
α = Dα ∩M1. (7)

Now we can obtain required Dα = D, because

Dα = DαM1 ∩Dα (4)
= DM1 ∩Dα (3)

= D(Dα ∩M1)
(7)
= D(D ∩M1) = D.

So, by Corollary 4.2, D is fully invariant, which finishes the proof. ⊓⊔
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